Your browser doesn't support javascript.
loading
MOF Hybrid for Long-Term Pest Management and Micronutrient Supply Triggered with Protease.
Ma, Song; Wang, Yingjie; Yang, Xipeng; Ni, Boli; Lü, Shaoyu.
Afiliação
  • Ma S; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Wang Y; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Yang X; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Ni B; Gansu Tobacco Industrial Company Limited, Lanzhou 730050, China.
  • Lü S; State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
ACS Appl Mater Interfaces ; 14(15): 17783-17793, 2022 Apr 20.
Article em En | MEDLINE | ID: mdl-35393856
ABSTRACT
Advanced intelligent systems for delivery of pesticides or fertilizers require formulations that allow for long-term efficacy. In this work, a metal-organic framework (MOF) hybrid was developed for long-term pest management and micronutrient supply. Zeolitic imidazolate framework-8 was fabricated for crop micronutrients (Zn2+) supply and insecticide dinotefuran (DNF) encapsulation. Polymethylmethacrylate was polymerized in situ to impart the MOF hybrid with sustained cargo delivery. Then, zein was introduced to facilitate protease-triggered cargo release associated with the microenvironment of pests and targeted release. The resulting MOF hybrid exhibited stimulus-responsive, slow-release behaviors. Sustained DNF delivery was achieved over a period of at least 32 days in soil. Compared with that of free DNF, the UV resistance of DNF in the MOF hybrid increased by nearly 10 times, and the insecticidal efficiency increased 33.3% with leaching treatment and 40.1% after incubating in a greenhouse for 14 days. This MOF hybrid provides a controlled, targeted, and sustained delivery formulation for long-term pest management and crop micronutrient supply and has huge application prospects in sustainable agriculture.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligoelementos / Estruturas Metalorgânicas Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligoelementos / Estruturas Metalorgânicas Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China
...