Your browser doesn't support javascript.
loading
Effect of foliage applied chitosan-based silicon nanoparticles on arsenic uptake and translocation in rice (Oryza sativa L.).
Jia-Yi, Yang; Meng-Qiang, Sun; Zhi-Liang, Chen; Yu-Tang, Xiao; Hang, Wei; Jian-Qiang, Zhang; Ling, Huang; Qi, Zou.
Afiliação
  • Jia-Yi Y; Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China; School of Environment, South China Normal University, Guang
  • Meng-Qiang S; Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China.
  • Zhi-Liang C; Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China. Electronic address: chenzhiliang@scies.org.
  • Yu-Tang X; School of Environment, South China Normal University, Guangzhou 510006, PR China.
  • Hang W; Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China.
  • Jian-Qiang Z; Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China.
  • Ling H; Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China.
  • Qi Z; Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China.
J Hazard Mater ; 433: 128781, 2022 07 05.
Article em En | MEDLINE | ID: mdl-35405587
ABSTRACT
In this study, chitosan-based silicon nanoparticles (Chsi-NPs) are prepared that primarily consists of C (57.9%), O (31.3%), N (5.6%), and Si (3.5%) and are 10-180 nm in size. We then explore the effect on the foliage applied on rice planted on soil contaminated with 104 mg·kg-1 arsenic (As); low (3 mg·L-1)and high (15 mg·L-1) doses of the foliar Chsi-NPs are administered during the rice grain filling stage. The results showed that the higher dose foliar Chsi-NPs treatment reduced the As concentration in the grain by 61.2% but increased As concentration in the leaves by 47.1% compared to the control treatment. The foliar spraying of the Chsi-NPs inhibited As transport to the grain by facilitating the attachment of As to the cell wall, with higher doses of the foliar Chsi-NPs treatment increased by 8.7%. The foliar spraying of Chsi-NPs increased the malondialdehyde levels by 18.4%, the catalase activity by 49.0%, and the glutathione activity by 99.0%. These results indicated that the foliar Chsi-NPs application was effective for alleviating As toxicity and accumulation in rice. This study provides a novel method for effectively alleviating As accumulation in rice.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Oryza / Poluentes do Solo / Quitosana / Nanopartículas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Oryza / Poluentes do Solo / Quitosana / Nanopartículas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article