Your browser doesn't support javascript.
loading
Development of an In Vitro Release Assay for Low-Density Cannabidiol Nanoparticles Prepared by Flash NanoPrecipitation.
Caggiano, Nicholas J; Wilson, Brian K; Priestley, Rodney D; Prud'homme, Robert K.
Afiliação
  • Caggiano NJ; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
  • Wilson BK; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
  • Priestley RD; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
  • Prud'homme RK; Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States.
Mol Pharm ; 19(5): 1515-1525, 2022 05 02.
Article em En | MEDLINE | ID: mdl-35412842
ABSTRACT
Nanoparticle encapsulation is an attractive approach to improve the oral bioavailability of hydrophobic therapeutics. The high specific surface area of nanoparticle formulations, combined with the thermodynamically driven increased solubility of an amorphous drug core, promotes rapid drug dissolution. However, the physicochemical properties of the hydrophobic therapeutic can present obstacles to in vitro characterization of nanoparticle formulations. Namely, drugs with low density and high membrane binding affinity frustrate traditional analytical methods to monitor release kinetics from nanoparticles. In this work, cannabidiol (CBD) was encapsulated into nanoparticles with low polydispersity and high drug loading via Flash NanoPrecipitation (FNP), a scalable self-assembly process. Hydroxypropyl methylcellulose acetate succinate (HPMCAS) and lecithin were employed as amphiphilic particle stabilizers during the FNP process. However, the low density and high membrane binding affinity of the amorphous CBD nanoparticle core prevented the characterization of in vitro release kinetics by conventional methods. Released CBD could not be separated from intact nanoparticles by filtration or centrifugation. To address this challenge, an alternative approach is described to coencapsulate 6 nm hydrophobic Fe3O4 colloids with CBD during FNP. The Fe3O4 colloids were added at 33% by mass (approximately 20% by volume) to increase the density of the nanoparticles, resulting in particles with an average diameter of 160 nm (CBD-lecithin-Fe3O4) or 280 nm (CBD-HPMCAS-Fe3O4). This densification enabled the centrifugal separation of dissolved (released) CBD from unreleased CBD during the in vitro assay while avoiding the losses associated with a filtration step. The resulting nanoparticle formulations provided more rapid and complete in vitro dissolution kinetics than bulk CBD, representing a 6-fold improvement in dissolution compared to crystalline CBD. The coencapsulation of high-density Fe3O4 colloids to enable the separation of nanoparticles from release media is a novel approach to measuring in vitro release kinetics of nanoencapsulated low-density, hydrophobic drug molecules.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canabidiol / Nanopartículas Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canabidiol / Nanopartículas Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos
...