Your browser doesn't support javascript.
loading
Engineering a living cardiac pump on a chip using high-precision fabrication.
Michas, Christos; Karakan, M Çagatay; Nautiyal, Pranjal; Seidman, Jonathan G; Seidman, Christine E; Agarwal, Arvind; Ekinci, Kamil; Eyckmans, Jeroen; White, Alice E; Chen, Christopher S.
Afiliação
  • Michas C; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
  • Karakan MÇ; Photonics Center, Boston University, Boston, MA 02215, USA.
  • Nautiyal P; Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
  • Seidman JG; Photonics Center, Boston University, Boston, MA 02215, USA.
  • Seidman CE; Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
  • Agarwal A; Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA.
  • Ekinci K; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Eyckmans J; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
  • White AE; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
  • Chen CS; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
Sci Adv ; 8(16): eabm3791, 2022 Apr 22.
Article em En | MEDLINE | ID: mdl-35452278
ABSTRACT
Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber. Furthermore, we fabricate microfluidic valves with extreme sensitivity to rectify the flow generated by the ventricular chamber. The integrated microfluidic system recapitulates the ventricular fluidic function and exhibits a complete pressure-volume loop with isovolumetric phases. Together, our results demonstrate a previously unexplored application of high-precision fabrication that can be generalized to expand the accessible spectrum of organ-on-a-chip models toward structurally and biomechanically sophisticated tissue systems.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA