Your browser doesn't support javascript.
loading
Lignin removal improves xylooligosaccharides production from poplar by acetic acid hydrolysis.
Ying, Wenjun; Ouyang, Jia; Lian, Zhina; Xu, Yong; Zhang, Junhua.
Afiliação
  • Ying W; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Ouyang J; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037,
  • Lian Z; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037,
  • Xu Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037,
  • Zhang J; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037,
Bioresour Technol ; 354: 127190, 2022 Jun.
Article em En | MEDLINE | ID: mdl-35452823
ABSTRACT
Organic acid hydrolysis is a potential method for xylooligosaccharides (XOS) production from lignocelluloses. However, the effect of lignin content on XOS production using organic acid hydrolysis remains unclear. In this work, the effect of delignification on XOS production from poplar by acetic acid (AC) hydrolysis was investigated. Hydrogen peroxide-acetic acid (HPAC) pretreatment catalyzed by 0-200 mM H2SO4 (HPAC0-HPAC200) removed 21.6-86.5% of lignin in poplar. HPAC pretreatment increased the xylan accessibility to AC solution, thus increasing the xylan removal during AC hydrolysis. An appropriate delignification (61.7%) resulted in the highest XOS yield of 37.4% by AC hydrolysis, increased by 29.9% compared to the optimal XOS yield (28.8%) from raw poplar. After alkaline post-incubation, the glucose yield of poplar residue rose from 57.1% to 78.6%. This work developed a delignification process to efficiently improve XOS and monosaccharides production from poplar.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Acético / Populus Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Acético / Populus Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China