Your browser doesn't support javascript.
loading
Intercomparing Superconducting Gravimeter Records in a Dense Meter-Scale Network at the J9 Gravimetric Observatory of Strasbourg, France.
Hinderer, J; Warburton, R J; Rosat, S; Riccardi, U; Boy, J-P; Forster, F; Jousset, P; Güntner, A; Erbas, K; Littel, F; Bernard, J-D.
Afiliação
  • Hinderer J; Institut Terre et Environnement de Strasbourg (UMR 7063), Université de Strasbourg/EOST, CNRS, Strasbourg, France.
  • Warburton RJ; GWR Instruments Inc., San Diego, USA.
  • Rosat S; Institut Terre et Environnement de Strasbourg (UMR 7063), Université de Strasbourg/EOST, CNRS, Strasbourg, France.
  • Riccardi U; Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università Federico II di Napoli, Naples, Italy.
  • Boy JP; Institut Terre et Environnement de Strasbourg (UMR 7063), Université de Strasbourg/EOST, CNRS, Strasbourg, France.
  • Forster F; Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany.
  • Jousset P; Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany.
  • Güntner A; Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany.
  • Erbas K; Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany.
  • Littel F; Institut Terre et Environnement de Strasbourg (UMR 7063), Université de Strasbourg/EOST, CNRS, Strasbourg, France.
  • Bernard JD; Institut Terre et Environnement de Strasbourg (UMR 7063), Université de Strasbourg/EOST, CNRS, Strasbourg, France.
Pure Appl Geophys ; 179(5): 1701-1727, 2022.
Article em En | MEDLINE | ID: mdl-35469177
ABSTRACT
This study is a metrological investigation of eight superconducting gravimeters that have operated in the Strasbourg gravimetric Observatory. These superconducting gravimeters include an older compact C026 model, a new observatory type iOSG23 and six iGravs (6, 15, 29, 30, 31, 32). We first compare the amplitude calibration of the meters using measurements from FG5 #206 absolute gravimeter (AG). In a next step we compute the amplitude calibration of all the meters by time regression with respect to iOSG23 itself carefully calibrated by numerous AG experiments. The relative calibration values are much more precise than absolute calibration for each instrument and strongly reduce any tidal residual signal. We also compare the time lags of the various instruments with respect to iOSG23, either by time cross-correlation or tidal analysis for the longest records (about 1 year). The instrumental drift behavior of the iGravs and iOSG23 is then investigated and we examine the relationships observed between gravity and body temperature measurements. Finally, we compare the noise levels of all the instruments. A three-channel correlation analysis is used to separate the incoherent (instrumental) noise from the coherent (ambient) noise. The self-noise is then compared to a model of thermal noise (Brownian motion) using the known instrumental parameters of the damped harmonic oscillator. The self-noise of iGrav instruments is well-explained by the thermal noise model at seismic frequencies (between 10-3 and 10-2 Hz). As expected, the self-noise of iOSG23 with a heavier sphere is also lower than that of iGravs at such frequencies.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pure Appl Geophys Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pure Appl Geophys Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França