Development of bimetallic nickel-based catalysts supported on activated carbon for green fuel production.
RSC Adv
; 10(61): 37218-37232, 2020 Oct 07.
Article
em En
| MEDLINE
| ID: mdl-35521277
In this work, the catalytic deoxygenation of waste cooking oil (WCO) over acid-base bifunctional catalysts (NiLa, NiCe, NiFe, NiMn, NiZn, and NiW) supported on activated carbon (AC) was investigated. A high hydrocarbon yield above 60% with lower oxygenated species was found in the liquid product, with the product being selective toward n-(C15 + C17)-diesel fractions. The predominance of n-(C15 + C17) hydrocarbons with the concurrent production of CO and CO2, indicated that the deoxygenation pathway proceeded via decarbonylation and decarboxylation mechanisms. High deoxygenation activity with better n-(C15 + C17) selectivity over NiLa/AC exposed the great synergistic interaction between La and Ni, and the compatibility of the acid-base sites increased the removal of oxygenated species. The effect of La on the deoxygenation reaction performance was investigated and it was found that a high percentage of La species would be beneficial for the removal of C-O bonded species. The optimum deoxygenation activity of 88% hydrocarbon yield with 75% n-(C15 + C17) selectivity was obtained over 20% of La, which strongly evinced that La leads to a greater enhancement of the deoxygenation activity. The NiLa/AC reusability study showed consistent deoxygenation reactions with 80% hydrocarbon yield and 60% n-(C15 + C17) hydrocarbon selectivity within 6 runs.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
RSC Adv
Ano de publicação:
2020
Tipo de documento:
Article
País de publicação:
Reino Unido