Refinement of computational identification of somatic copy number alterations using DNA methylation microarrays illustrated in cancers of unknown primary.
Brief Bioinform
; 23(5)2022 09 20.
Article
em En
| MEDLINE
| ID: mdl-35524475
High-throughput genomic technologies are increasingly used in personalized cancer medicine. However, computational tools to maximize the use of scarce tissues combining distinct molecular layers are needed. Here we present a refined strategy, based on the R-package 'conumee', to better predict somatic copy number alterations (SCNA) from deoxyribonucleic acid (DNA) methylation arrays. Our approach, termed hereafter as 'conumee-KCN', improves SCNA prediction by incorporating tumor purity and dynamic thresholding. We trained our algorithm using paired DNA methylation and SNP Array 6.0 data from The Cancer Genome Atlas samples and confirmed its performance in cancer cell lines. Most importantly, the application of our approach in cancers of unknown primary identified amplified potentially actionable targets that were experimentally validated by Fluorescence in situ hybridization and immunostaining, reaching 100% specificity and 93.3% sensitivity.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Primárias Desconhecidas
/
Variações do Número de Cópias de DNA
Tipo de estudo:
Diagnostic_studies
Limite:
Humans
Idioma:
En
Revista:
Brief Bioinform
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Espanha
País de publicação:
Reino Unido