Your browser doesn't support javascript.
loading
GRaSP-web: a machine learning strategy to predict binding sites based on residue neighborhood graphs.
Santana, Charles A; Izidoro, Sandro C; de Melo-Minardi, Raquel C; Tyzack, Jonathan D; Ribeiro, António J M; Pires, Douglas E V; Thornton, Janet M; de A Silveira, Sabrina.
Afiliação
  • Santana CA; Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
  • Izidoro SC; Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
  • de Melo-Minardi RC; Institute of Technological Sciences (ICT), Advanced Campus at Itabira, Universidade Federal de Itajubá, Itabira 35903-087, Brazil.
  • Tyzack JD; Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
  • Ribeiro AJM; Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
  • Pires DEV; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Thornton JM; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • de A Silveira S; School of Computing and Information Systems, University of Melbourne, Parkville 3052, Australia.
Nucleic Acids Res ; 50(W1): W392-W397, 2022 07 05.
Article em En | MEDLINE | ID: mdl-35524575
Proteins are essential macromolecules for the maintenance of living systems. Many of them perform their function by interacting with other molecules in regions called binding sites. The identification and characterization of these regions are of fundamental importance to determine protein function, being a fundamental step in processes such as drug design and discovery. However, identifying such binding regions is not trivial due to the drawbacks of experimental methods, which are costly and time-consuming. Here we propose GRaSP-web, a web server that uses GRaSP (Graph-based Residue neighborhood Strategy to Predict binding sites), a residue-centric method based on graphs that uses machine learning to predict putative ligand binding site residues. The method outperformed 6 state-of-the-art residue-centric methods (MCC of 0.61). Also, GRaSP-web is scalable as it takes 10-20 seconds to predict binding sites for a protein complex (the state-of-the-art residue-centric method takes 2-5h on the average). It proved to be consistent in predicting binding sites for bound/unbound structures (MCC 0.61 for both) and for a large dataset of multi-chain proteins (4500 entries, MCC 0.61). GRaSPWeb is freely available at https://grasp.ufv.br.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido