Your browser doesn't support javascript.
loading
Deep mutational engineering of broadly-neutralizing nanobodies accommodating SARS-CoV-1 and 2 antigenic drift.
Laroche, Adrien; Orsini Delgado, Maria Lucia; Chalopin, Benjamin; Cuniasse, Philippe; Dubois, Steven; Sierocki, Raphaël; Gallais, Fabrice; Debroas, Stéphanie; Bellanger, Laurent; Simon, Stéphanie; Maillère, Bernard; Nozach, Hervé.
Afiliação
  • Laroche A; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Orsini Delgado ML; CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Chalopin B; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Cuniasse P; CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.
  • Dubois S; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Sierocki R; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Gallais F; Deeptope SAS, Massy, France.
  • Debroas S; CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France.
  • Bellanger L; CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France.
  • Simon S; CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France.
  • Maillère B; CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Nozach H; CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.
MAbs ; 14(1): 2076775, 2022.
Article em En | MEDLINE | ID: mdl-35593235
Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Anticorpos de Domínio Único / COVID-19 Limite: Humans Idioma: En Revista: MAbs Assunto da revista: ALERGIA E IMUNOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Anticorpos de Domínio Único / COVID-19 Limite: Humans Idioma: En Revista: MAbs Assunto da revista: ALERGIA E IMUNOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França País de publicação: Estados Unidos