Your browser doesn't support javascript.
loading
Machine-Learning-Aided Quantification of Area Coverage of Adherent Cells from Phase-Contrast Images.
Rosoff, Gal; Elkabetz, Shir; Gheber, Levi A.
Afiliação
  • Rosoff G; Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
  • Elkabetz S; Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
  • Gheber LA; Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Microsc Microanal ; : 1-8, 2022 May 31.
Article em En | MEDLINE | ID: mdl-35638222
The advances in machine learning (ML) software availability, efficiency, and friendliness, combined with the increase in the computation power of personal computers, are harnessed to rapidly and (relatively) effortlessly analyze time-lapse image series of adherent cell cultures, taken with phase-contrast microscopy (PCM). Since PCM is arguably the most widely used technique to visualize adherent cells in a label-free, noninvasive, and nondisruptive manner, the ability to easily extract quantitative information on the area covered by cells, should provide a valuable tool for investigation. We demonstrate two cases, in one we monitor the shrinking of cells in response to a toxicant, and in the second we measure the proliferation curve of mesenchymal stem cells (MSCs).
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microsc Microanal Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Israel País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microsc Microanal Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Israel País de publicação: Reino Unido