Your browser doesn't support javascript.
loading
Production, purification, and characterization of recombinant rabies virus glycoprotein expressed in PichiaPink™ yeast.
Askri, Hana; Akrouti, Ines; Rourou, Samia; Kallèl, Hela.
Afiliação
  • Askri H; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, 13, place Pasteur. BP.74., Tunis 1002, Tunisia.
  • Akrouti I; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, 13, place Pasteur. BP.74., Tunis 1002, Tunisia.
  • Rourou S; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, 13, place Pasteur. BP.74., Tunis 1002, Tunisia.
  • Kallèl H; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, 13, place Pasteur. BP.74., Tunis 1002, Tunisia.
Biotechnol Rep (Amst) ; 35: e00736, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35646619
ABSTRACT
The commonly used host for industrial production of recombinant proteins Pichia pastoris, has been used in this work to produce the rabies virus glycoprotein (RABV-G). To allow a constitutive expression and the secretion of the expressed recombinant RABV-G, the PichiaPink™ commercialized expression vectors were modified to contain the constitutive GAP promoter and the α secretion signal sequences. Recombinant PichiaPink™ strains co-expressing the RABV-G and the protein chaperone PDI, have been then generated and screened for the best producer clone. The influence of seven carbon sources on the expression of the RABV-G, has been studied under different culture conditions in shake flask culture. An incubation temperature of 30°C under an agitation rate of 250 rpm in a filling volume of 101 flask/culture volume ratio were the optimal conditions for the RABV-G production in shake flask for all screened carbon sources. A bioreactor Fed batch culture has been then carried using glycerol and glucose as they were good carbon sources for cell growth and RABV-G production in shake flask scale. Cells were grown on glycerol during the batch phase then fed with glycerol or glucose defined solutions, a final RABV-G concentration of 2.7 µg/l was obtained with a specific product yield (YP/X) of 0.032 and 0.06 µg/g(DCW) respectively. The use of semi-defined feeding solution enhanced the production and the YP/X to 12.9 µg/l and 0.135 µg/g(DCW) respectively. However, the high cell density favored by these carbon sources resulted in oxygen limitation which influenced the glycosylation pattern of the secreted RABV-G. Alternatively, the use of sucrose as substrate for RABV-G production in large scale culture, resulted in less biomass production and a YP/X of 0.310 µg/g(DCW) was obtained. A cation exchange chromatography was then used for RABV-G purification as one step method. The purified protein was correctly folded and glycosylated and able to adopt trimeric conformation. The knowledges gained through this work offer a valuable insight into the bioprocess design of RABV-G production in Pichia pastoris to obtain a correctly folded protein which can be used during an immunization proposal for subunit Rabies vaccine development.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biotechnol Rep (Amst) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Tunísia País de publicação: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biotechnol Rep (Amst) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Tunísia País de publicação: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS