Controlled synthesis of zinc-metal organic framework microflower with high efficiency electrochemiluminescence for miR-21 detection.
Biosens Bioelectron
; 213: 114443, 2022 Oct 01.
Article
em En
| MEDLINE
| ID: mdl-35667291
In this study, as the self-enhanced electrochemiluminescence (ECL) emitter, the dual ligand metal-organic framework microflower was successfully synthesized via a facile one-pot method by integrating 9,10-di(pcarboxyphenyl) anthracene (DPA) ligand and N, N-Diethylethylenediamine (DEAEA) ligand into zinc ions metal node, denoted as Zn-DPA/DEAEA (d-MOF). The DPA ligand was a typical ECL luminophore. The DEAEA ligand not only could be used as an effective co-reactant but also a morphologic regulator. The morphology of d-MOF changed from a thick sheet to a thin sheet and finally a microflower by controlling the dosage of DEAEA. Linking emitter and co-reactant in a MOF structure, the d-MOF exhibited an efficient intramolecular electron transfer process, with a strong and ultra-stable ECL performance without any extra co-reactants compared with the DPA ligand or the Zn-DPA single ligand MOF (s-MOF). Furthermore, an ECL resonance energy transfer (ECL-RET) biosensor was fabricated using d-MOF as donor, and 6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein (JOE) as accepter for the ultra-sensitive detection of miR-21 without additional co-reactant. And with a detection linear range of miR-21 was 100.0 aM to 10.0 pM, with a detection limit of 61.7 aM. This work offers a new perspective for the future design of stable self-enhanced ECL materials.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Técnicas Biossensoriais
/
MicroRNAs
/
Nanopartículas Metálicas
/
Estruturas Metalorgânicas
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Biosens Bioelectron
Assunto da revista:
BIOTECNOLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Reino Unido