Your browser doesn't support javascript.
loading
Caffeine excites medial parabrachial nucleus neurons of mice by blocking adenosine A1 receptor.
Shi, Hua; Tu, Yunjia; Li, Yuanai; Ma, Chunyan; Gyabaah, Adwoa Takyiwaa; Yu, Chenyi; Li, Zhijie; Chen, Jiayi; Li, Zhilin; Huang, Zhi-Li; Cai, Xiaohong.
Afiliação
  • Shi H; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Tu Y; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Li Y; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Ma C; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Gyabaah AT; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Yu C; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Li Z; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China.
  • Chen J; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Li Z; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
  • Huang ZL; Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, PR China. Electronic address: huangzl@fudan.edu.cn.
  • Cai X; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China. Electronic address: caixh839@si
Brain Res ; 1790: 147984, 2022 09 01.
Article em En | MEDLINE | ID: mdl-35709891
Caffeine has been used as a first-line drug for treatment of apnea neonatorum for decades due to its high safety and effectiveness. Studies report that caffeine mainly acts as a blocker of Adenosine Receptors (ARs). However, the mechanism of caffeine in reducing apnea neonatorum in the central nervous system has not been fully explored. Medial parabrachial nucleus (MPB) is part of the respiratory center of the pons that may be related to the activity of caffeine. Previous studies have not explored the effect and mechanism of caffeine on MPB neurons. To elucidate this, the current study used antagonists of A1 and A2a receptors to mimic the effect of caffeine in MPB of mice in vitro using the patch-clamp technique. The firing rates and spontaneous post-synaptic currents were recorded. The findings of the study showed that caffeine excited MPB neurons. Notably, the adenosine A1R antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT) but not the adenosine A2aR antagonist Istradefylline (KW6002) mimicked the exciting effect of caffeine, implying that caffeine excited MPB neurons in mice by blocking A1Rs. Further, the results indicated that caffeine could increase efficiency of synaptic transmission to excite MPB neurons. These findings suggest that A1Rs in MPB may be potential targets for caffeine in reducing apnea neonatorum.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptor A1 de Adenosina / Núcleos Parabraquiais Limite: Animals Idioma: En Revista: Brain Res Ano de publicação: 2022 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptor A1 de Adenosina / Núcleos Parabraquiais Limite: Animals Idioma: En Revista: Brain Res Ano de publicação: 2022 Tipo de documento: Article País de publicação: Holanda