Your browser doesn't support javascript.
loading
Estimation of left ventricular parameters based on deep learning method.
Cai, Li; Jiao, Jie; Ma, Pengfei; Xie, Wenxian; Wang, Yongheng.
Afiliação
  • Cai L; Xi'an Key Laboratory of Scientific Computation and Applied Statistics, Xi'an 710129, China.
  • Jiao J; NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Xi'an 710129, China.
  • Ma P; School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China.
  • Xie W; Xi'an Key Laboratory of Scientific Computation and Applied Statistics, Xi'an 710129, China.
  • Wang Y; NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Xi'an 710129, China.
Math Biosci Eng ; 19(7): 6638-6658, 2022 04 27.
Article em En | MEDLINE | ID: mdl-35730275
Estimating material properties of personalized human left ventricular (LV) modelling is a central problem in biomechanical studies. In this work we use deep learning (DL) method to evaluating the passive myocardial mechanical properties inversely. In the first part of the paper, we establish a standardized geometric model of the LV. The geometric model parameters are optimized based on 27 different healthy volunteers. In the second part, we use statistical methods and Latin hypercube sampling (LHS) to obtain the geometric parameters data. The LV myocardium is described using a structure-based orthotropic Holzapfel-Ogden constitutive law. The LV diastolic pressure-volume (PV) curves are calculated by numerical simulation. Tn the third part, we establish the multiple neural networks to pblackict PV curve parameters. Then, instead of using constrained optimization problems to solve constitutive parameters, DL was used to establish the nonlinear mapping relationship of geometric parameters, PV curve parameters and constitutive parameters. The results show that the deep learning method can greatly improve the computational efficiency of numerical simulation and increase the possibility of its application in rapid feedback of clinical data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Limite: Humans Idioma: En Revista: Math Biosci Eng Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Limite: Humans Idioma: En Revista: Math Biosci Eng Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos