Your browser doesn't support javascript.
loading
The Intervention Probability Curve: Modeling the Practical Application of Threshold-Guided Decision-Making, Evaluated in Lung, Prostate, and Ovarian Cancers.
Kammer, Michael N; Rowe, Dianna J; Deppen, Stephen A; Grogan, Eric L; Kaizer, Alexander M; Barón, Anna E; Maldonado, Fabien.
Afiliação
  • Kammer MN; Vanderbilt University Medical Center, Nashville, Tennessee.
  • Rowe DJ; Vanderbilt University Medical Center, Nashville, Tennessee.
  • Deppen SA; Vanderbilt University Medical Center, Nashville, Tennessee.
  • Grogan EL; Tennessee Valley Healthcare Administration Nashville Campus, Nashville, Tennessee.
  • Kaizer AM; Vanderbilt University Medical Center, Nashville, Tennessee.
  • Barón AE; Tennessee Valley Healthcare Administration Nashville Campus, Nashville, Tennessee.
  • Maldonado F; Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
Cancer Epidemiol Biomarkers Prev ; 31(9): 1752-1759, 2022 09 02.
Article em En | MEDLINE | ID: mdl-35732292
BACKGROUND: Diagnostic prediction models are useful guides when considering lesions suspicious for cancer, as they provide a quantitative estimate of the probability that a lesion is malignant. However, the decision to intervene ultimately rests on patient and physician preferences. The appropriate intervention in many clinical situations is typically defined by clinically relevant, actionable subgroups based upon the probability of malignancy. However, the "all-or-nothing" approach of threshold-based decisions is in practice incorrect. METHODS: Here, we present a novel approach to understanding clinical decision-making, the intervention probability curve (IPC). The IPC models the likelihood that an intervention will be chosen as a continuous function of the probability of disease. We propose the cumulative distribution function as a suitable model. The IPC is explored using the National Lung Screening Trial and the Prostate Lung Colorectal and Ovarian Screening Trial datasets. RESULTS: Fitting the IPC results in a continuous curve as a function of pretest probability of cancer with high correlation (R2 > 0.97 for each) with fitted parameters closely aligned with professional society guidelines. CONCLUSIONS: The IPC allows analysis of intervention decisions in a continuous, rather than threshold-based, approach to further understand the role of biomarkers and risk models in clinical practice. IMPACT: We propose that consideration of IPCs will yield significant insights into the practical relevance of threshold-based management strategies and could provide a novel method to estimate the actual clinical utility of novel biomarkers.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Ovarianas / Próstata Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Female / Humans / Male Idioma: En Revista: Cancer Epidemiol Biomarkers Prev Assunto da revista: BIOQUIMICA / EPIDEMIOLOGIA / NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Ovarianas / Próstata Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Female / Humans / Male Idioma: En Revista: Cancer Epidemiol Biomarkers Prev Assunto da revista: BIOQUIMICA / EPIDEMIOLOGIA / NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos