Your browser doesn't support javascript.
loading
Removal and recovery of phosphorus from secondary effluent using layered double hydroxide-biochar composites.
Zhang, Junmao; Huang, Wenqing; Yang, Dongxu; Xiang, Junling; Chen, Yi.
Afiliação
  • Zhang J; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
  • Huang W; Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, the Netherlands.
  • Yang D; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
  • Xiang J; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
  • Chen Y; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.. Electronic address: chenyi8574@cqu.edu.cn.
Sci Total Environ ; 844: 156802, 2022 Oct 20.
Article em En | MEDLINE | ID: mdl-35738371
ABSTRACT
Removal of phosphorus (P) from wastewater and its recovery as a fertilizer are solutions to both P pollution control and resource recycling for agriculture. In this study, various layered double hydroxide biochar composites (LDH/BCs), namely, Zn-Al-LDH/BC, Mg-Al-LDH/BC, and Mg-Fe-LDH/BC, were synthesized to remove P from secondary effluents and then applied as fertilizers. Batch experiments showed that LDH/BCs could adsorb P in fast kinetics, with adsorption capacities ranging 35.19-55.76 mg P/g. A dynamic experiment was performed under different column heights and flow rates, and the results fitted well with Thomas model (R2 > 0.90). These LDH/BCs effectively removed P in the continuous mode, even when treating secondary effluents. Furthermore, when the used LDH/BCs applied as fertilizers, the adsorbed Mg-Al-LDH/BC and Mg-Fe-LDH/BC stimulated crop growth; however, Zn-Al-LDH/BC did not. These differences were attributed to not only the availability of P, but also the stimulation or inhibition of photosynthetic pigment synthesis in crops by adsorbents. Overall, we synthesized LDH/BCs, which effectively removed and recovered P from secondary effluents, and investigated the factors influencing the effects of LDH/BCs on crops. We suggest that both P availability and physiological influences of adsorbents on crops should be considered when using adsorbents as fertilizers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Poluentes Químicos da Água Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Poluentes Químicos da Água Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China