Your browser doesn't support javascript.
loading
TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications.
Alajlan, Norah N; Ibrahim, Dina M.
Afiliação
  • Alajlan NN; Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia.
  • Ibrahim DM; Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia.
Micromachines (Basel) ; 13(6)2022 May 29.
Article em En | MEDLINE | ID: mdl-35744466
ABSTRACT
Recently, the Internet of Things (IoT) has gained a lot of attention, since IoT devices are placed in various fields. Many of these devices are based on machine learning (ML) models, which render them intelligent and able to make decisions. IoT devices typically have limited resources, which restricts the execution of complex ML models such as deep learning (DL) on them. In addition, connecting IoT devices to the cloud to transfer raw data and perform processing causes delayed system responses, exposes private data and increases communication costs. Therefore, to tackle these issues, there is a new technology called Tiny Machine Learning (TinyML), that has paved the way to meet the challenges of IoT devices. This technology allows processing of the data locally on the device without the need to send it to the cloud. In addition, TinyML permits the inference of ML models, concerning DL models on the device as a Microcontroller that has limited resources. The aim of this paper is to provide an overview of the revolution of TinyML and a review of tinyML studies, wherein the main contribution is to provide an analysis of the type of ML models used in tinyML studies; it also presents the details of datasets and the types and characteristics of the devices with an aim to clarify the state of the art and envision development requirements.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Arábia Saudita

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Arábia Saudita