Your browser doesn't support javascript.
loading
Quality-controlled R-loop meta-analysis reveals the characteristics of R-loop consensus regions.
Miller, Henry E; Montemayor, Daniel; Abdul, Jebriel; Vines, Anna; Levy, Simon A; Hartono, Stella R; Sharma, Kumar; Frost, Bess; Chédin, Frédéric; Bishop, Alexander J R.
Afiliação
  • Miller HE; Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
  • Montemayor D; Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA.
  • Abdul J; Bioinformatics Research Network, Atlanta, GA, USA.
  • Vines A; Department of Medicine, UT Health San Antonio, San Antonio, TX, USA.
  • Levy SA; Center for Precision Medicine, UT Health San Antonio, San Antonio, TX, USA.
  • Hartono SR; Bioinformatics Research Network, Atlanta, GA, USA.
  • Sharma K; Department of Biology, University of Ottawa, Ottawa, Canada.
  • Frost B; Bioinformatics Research Network, Atlanta, GA, USA.
  • Chédin F; Faculty of Arts, University of Bristol, Bristol, U.K.
  • Bishop AJR; Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
Nucleic Acids Res ; 50(13): 7260-7286, 2022 07 22.
Article em En | MEDLINE | ID: mdl-35758606
R-loops are three-stranded nucleic acid structures formed from the hybridization of RNA and DNA. While the pathological consequences of R-loops have been well-studied to date, the locations, classes, and dynamics of physiological R-loops remain poorly understood. R-loop mapping studies provide insight into R-loop dynamics, but their findings are challenging to generalize. This is due to the narrow biological scope of individual studies, the limitations of each mapping modality, and, in some cases, poor data quality. In this study, we reprocessed 810 R-loop mapping datasets from a wide array of biological conditions and mapping modalities. From this data resource, we developed an accurate R-loop data quality control method, and we reveal the extent of poor-quality data within previously published studies. We then identified a set of high-confidence R-loop mapping samples and used them to define consensus R-loop sites called 'R-loop regions' (RL regions). In the process, we identified a stark divergence between RL regions detected by S9.6 and dRNH-based mapping methods, particularly with respect to R-loop size, location, and colocalization with RNA binding factors. Taken together, this work provides a much-needed method to assess R-loop data quality and offers novel context regarding the differences between dRNH- and S9.6-based R-loop mapping approaches.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA / Estruturas R-Loop Tipo de estudo: Guideline / Prognostic_studies / Systematic_reviews Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA / Estruturas R-Loop Tipo de estudo: Guideline / Prognostic_studies / Systematic_reviews Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido