Toward Improved Charge Separation through Conformational Control in Copper Coordination Complexes.
J Am Chem Soc
; 144(27): 12116-12126, 2022 07 13.
Article
em En
| MEDLINE
| ID: mdl-35762527
The continued development of solar energy as a renewable resource necessitates new approaches to sustaining photodriven charge separation (CS). We present a bioinspired approach in which photoinduced conformational rearrangements at a ligand are translated into changes in coordination geometry and environment about a bound metal ion. Taking advantage of the differential coordination properties of CuI and CuII, these dynamics aim to facilitate intramolecular electron transfer (ET) from CuI to the ligand to create a CS state. The synthesis and photophysical characterization of CuCl(dpaaR) (dpaa = dipicolylaminoacetophenone, with R = H and OMe) are presented. These ligands incorporate a fluorophore that gives rise to a twisted intramolecular charge transfer (TICT) excited state. Excited-state ligand twisting provides a tetragonal coordination geometry capable of capturing CuII when an internal ortho-OMe binding site is present. NMR, IR, electron paramagnetic resonance (EPR), and optical spectroscopies, X-ray diffraction, and electrochemical methods establish the ground-state properties of these CuI and CuII complexes. The photophysical dynamics of the CuI complexes are explored by time-resolved photoluminescence and optical transient absorption spectroscopies. Relative to control complexes lacking a TICT-active ligand, the lifetimes of CS states are enhanced â¼1000-fold. Further, the presence of the ortho-OMe substituent greatly enhances the lifetime of the TICT* state and biases the coordination environment toward CuII. The presence of CuI decreases photoinduced degradation from 14 to <2% but does not result in significant quenching via ET. Factors affecting CS in these systems are discussed, laying the groundwork for our strategy toward solar energy conversion.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Complexos de Coordenação
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos