Effect of oral administration of a single bolus of six different protein sources on digestive physiology of red seabream Pagrus major juveniles.
Fish Physiol Biochem
; 48(4): 939-954, 2022 Aug.
Article
em En
| MEDLINE
| ID: mdl-35768739
To reveal direct effects of various protein sources on digestive physiology of red seabream, Pagrus major (38.5 ± 0.4 g), six different protein sources of fishmeal (FM), soybean meal (SBM), corn gluten meal (CGM), soy protein concentrate (SPC), poultry by-product meal (PBM), and poultry-feather meal (PFM) were orally administered to fish (2 mg protein/g body weight) and sampled at 1.5 h and 3 h after administration. Gallbladder weight of fish administered FM, PBM, and PFM decreased after administration (p < 0.0001), while no difference was observed in the other ingredients compared to a non-protein sham control group, indicating that animal protein sources could more strongly stimulate bile secretion than plant protein sources in red seabream. Trypsin and chymotrypsin activity in the intestinal content markedly increased by the FM, SBM, and PFM administration (p < 0.0001). Lipase and amylase activity was also increased by FM and SBM but also by CGM for lipase and by PBM and PFM for amylase (p < 0.0001). These indicate that stimulation effect of the secretion of digestive enzymes is largely different among the protein sources. This might be due to the absorptive capacity of the protein source since intestinal absorption parameter genes (anpep, cpa, ggt1, and atp1a2) also increased by the FM, SBM, PBM or PFM (p < 0.05). In addition to the secretion levels of bile and digestive enzymes, gene expression levels of bile related genes (cyp7a1, cyp8b1, and shp) and digestion-regulating genes (casr and cck) were increased by the FM, SBM, PFM, and/or PBM administration, suggesting that animal proteins and SBM could be potent digestive stimulants compared to CGM and SPC. This study first revealed that single protein sources directly influence digestive enzyme secretion and bile secretion in fish. Information about the direct effect of each single source on digestive physiology could help to design feed formulation with less fishmeal.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Perciformes
/
Dourada
Limite:
Animals
Idioma:
En
Revista:
Fish Physiol Biochem
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Japão
País de publicação:
Holanda