Your browser doesn't support javascript.
loading
A biosensing system employing nanowell microelectrode arrays to record the intracellular potential of a single cardiomyocyte.
Xiang, Yuting; Liu, Haitao; Yang, Wenjian; Xu, Zhongyuan; Wu, Yue; Tang, Zhaojian; Zhu, Zhijing; Zeng, Zhiyong; Wang, Depeng; Wang, Tianxing; Hu, Ning; Zhang, Diming.
Afiliação
  • Xiang Y; Department of Obstetrics and Gynecology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, 523058 China.
  • Liu H; Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China.
  • Yang W; Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou, 311100 China.
  • Xu Z; Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China.
  • Wu Y; Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China.
  • Tang Z; Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China.
  • Zhu Z; Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China.
  • Zeng Z; Key Laboratory of Novel Target and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou, 310015 China.
  • Wang D; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058 China.
  • Wang T; School of Automation, Nanjing University of Science and Technology, Nanjing, 210094 China.
  • Hu N; College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China.
  • Zhang D; E-LinkCare Meditech Co., Ltd, Hangzhou, 310011 China.
Microsyst Nanoeng ; 8: 70, 2022.
Article em En | MEDLINE | ID: mdl-35774495
ABSTRACT
Electrophysiological recording is a widely used method to investigate cardiovascular pathology, pharmacology and developmental biology. Microelectrode arrays record the electrical potential of cells in a minimally invasive and high-throughput way. However, commonly used microelectrode arrays primarily employ planar microelectrodes and cannot work in applications that require a recording of the intracellular action potential of a single cell. In this study, we proposed a novel measuring method that is able to record the intracellular action potential of a single cardiomyocyte by using a nanowell patterned microelectrode array (NWMEA). The NWMEA consists of five nanoscale wells at the center of each circular planar microelectrode. Biphasic pulse electroporation was applied to the NWMEA to penetrate the cardiomyocyte membrane, and the intracellular action potential was continuously recorded. The intracellular potential recording of cardiomyocytes by the NWMEA measured a potential signal with a higher quality (213.76 ± 25.85%), reduced noise root-mean-square (~33%), and higher signal-to-noise ratio (254.36 ± 12.61%) when compared to those of the extracellular recording. Compared to previously reported nanopillar microelectrodes, the NWMEA could ensure single cell electroporation and acquire high-quality action potential of cardiomyocytes with reduced fabrication processes. This NWMEA-based biosensing system is a promising tool to record the intracellular action potential of a single cell to broaden the usage of microelectrode arrays in electrophysiological investigation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microsyst Nanoeng Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microsyst Nanoeng Ano de publicação: 2022 Tipo de documento: Article