Your browser doesn't support javascript.
loading
Achieving job-synergistic polysulfides adsorption-conversion within hollow structured MoS2/Co4S3/C heterojunction host for long-life lithium-sulfur batteries.
Li, Fangyuan; Wu, Yujie; Lin, Yongxian; Li, Junhao; Sun, Yajie; Nan, Haoxiong; Wu, Ming; Dong, Huafeng; Shi, Kaixiang; Liu, Quanbing.
Afiliação
  • Li F; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
  • Wu Y; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
  • Lin Y; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
  • Li J; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
  • Sun Y; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
  • Nan H; School of Science, Hainan University, Haikou 570228, China.
  • Wu M; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
  • Dong H; School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China.
  • Shi K; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. Electronic address: shikx@hotmail.com.
  • Liu Q; Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering
J Colloid Interface Sci ; 626: 535-543, 2022 Nov 15.
Article em En | MEDLINE | ID: mdl-35809442
Lithium-sulfur batteries are considered one of the most promising next-generation energy storage devices owing to their ultrahigh theoretical energy density and environmental friendliness. However, the sluggish electrode reaction kinetics of the sulfur cathode and shuttle effects of lithium polysulfide (LiPSs) restrict their active material utilization and cycling stability. Herein, a hollow, free-standing MoS2/Co4S3/C heterojunction was fabricated and employed as a cathode host for high-performance lithium-sulfur batteries (LSBs). The unique hollow nanostructured MoS2/Co4S3/C can achieve job-synergistic polysulfide adsorption-conversion, in which the conductive nitrogen-doped carbon framework facilitates rapid electron/ion diffusion; polar Co4S3 species provide strong chemisorption capability and endow intrinsic catalytic sites towards LiPSs, and MoS2 serves as a nanocrystal to accelerate the reaction dynamics. As a result, MoS2/Co4S3/C/S exhibited high reversible specific capacities at 2C and was maintained at 394 mAh g-1 after 1000 cycles, with a 0.04% capacity decay rate. Impressively, the high reversible specific capacities with high sulfur loading of 4.1 mg cm-2 were maintained at 906.7 mAh g-1.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos