Your browser doesn't support javascript.
loading
Design and Synthesis of Carbothioamide/Carboxamide-Based Pyrazoline Analogs as Potential Anticancer Agents: Apoptosis, Molecular Docking, ADME Assay, and DNA Binding Studies.
Rana, Manish; Faizan, Md Imam; Dar, Sajad Hussain; Ahmad, Tanveer.
Afiliação
  • Rana M; Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
  • Faizan MI; Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India.
  • Dar SH; Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
  • Ahmad T; Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025, India.
  • Rahisuddin; Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
ACS Omega ; 7(26): 22639-22656, 2022 Jul 05.
Article em En | MEDLINE | ID: mdl-35811873
To discover anticancer drugs with novel structures and expand our research scope, pyrazoline derivatives (3a-3l) were designed and synthesized through cyclization of chalcones with thiosemicarbazide/semicarbazide in CH3COOH as a solvent. All newly synthesized pyrazoline derivatives were fully characterized using several spectroscopic experiments such as 1H, 13C NMR, FT-IR spectroscopy, and mass analysis. By HPLC, the purity of all analogs was found above 95% and both lead compounds (3a and 3h) were also validated by HRMS. Anticancer activity of synthesized pyrazoline derivatives (3a-3l) was investigated by the MTT assay against the human lung cancer cell (A549), human cervical cancer cell (HeLa), and human primary normal lung cells (HFL-1). Staurosporine (STS) was used as a standard drug. The anticancer results showed that two potent analogs 3a and 3h exhibit excellent activity against A549 (IC50 = 13.49 ± 0.17 and 22.54 ± 0.25 µM) and HeLa cells (IC50 = 17.52 ± 0.09 and 24.14 ± 0.86 µM) and low toxicity against the HFL-1 (IC50 = 114.50 ± 0.01 and 173.20 ± 10 µM). The flow cytometry was further used to confirm the anticancer activity of potent derivatives against the A549 cancer cell line. DNA binding interaction of anticancer agents 3a and 3h with Ct-DNA has been carried out by absorption, fluorescence, EtBr (dye displacement assay), circular dichroism, cyclic voltammetry and time-resolved fluorescence, which showed noncovalent binding mode of interaction. Anticancer activity of both lead compounds (3a and 3h) may be attributed to DNA binding. The evaluation of the antioxidant potential of pyrazoline analogs 3a and 3h by 2,2-diphenyl-1-picrylhydrazyl free radical showed promising antioxidant activity with IC50 values of 0.132 ± 0.012 and 0.215 ± 0.025 µg/mL, respectively. In silico molecular docking of pyrazoline derivatives was also performed using autodock vina software against the DNA hexamer with PDB ID: 1Z3F and ADMET properties to explore their best hits.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos