AC-PCoA: Adjustment for confounding factors using principal coordinate analysis.
PLoS Comput Biol
; 18(7): e1010184, 2022 07.
Article
em En
| MEDLINE
| ID: mdl-35830390
Confounding factors exist widely in various biological data owing to technical variations, population structures and experimental conditions. Such factors may mask the true signals and lead to spurious associations in the respective biological data, making it necessary to adjust confounding factors accordingly. However, existing confounder correction methods were mainly developed based on the original data or the pairwise Euclidean distance, either one of which is inadequate for analyzing different types of data, such as sequencing data. In this work, we proposed a method called Adjustment for Confounding factors using Principal Coordinate Analysis, or AC-PCoA, which reduces data dimension and extracts the information from different distance measures using principal coordinate analysis, and adjusts confounding factors across multiple datasets by minimizing the associations between lower-dimensional representations and confounding variables. Application of the proposed method was further extended to classification and prediction. We demonstrated the efficacy of AC-PCoA on three simulated datasets and five real datasets. Compared to the existing methods, AC-PCoA shows better results in visualization, statistical testing, clustering, and classification.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Projetos de Pesquisa
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
PLoS Comput Biol
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos