Your browser doesn't support javascript.
loading
Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques.
Kumar, Vinod; Lalotra, Gotam Singh; Sasikala, Ponnusamy; Rajput, Dharmendra Singh; Kaluri, Rajesh; Lakshmanna, Kuruva; Shorfuzzaman, Mohammad; Alsufyani, Abdulmajeed; Uddin, Mueen.
Afiliação
  • Kumar V; Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India.
  • Lalotra GS; Government Degree College Basohli, University of Jammu, Basohli 184201, India.
  • Sasikala P; New Media Technology, Makhanlal Chaturvedi National University of Journalism and Communication, Bhopal 462011, India.
  • Rajput DS; School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India.
  • Kaluri R; School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India.
  • Lakshmanna K; School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India.
  • Shorfuzzaman M; Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
  • Alsufyani A; Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
  • Uddin M; College of Computing and IT University of Doha for Science and Technology, Doha P.O. Box 24449, Qatar.
Healthcare (Basel) ; 10(7)2022 Jul 13.
Article em En | MEDLINE | ID: mdl-35885819
Nowadays, healthcare is the prime need of every human being in the world, and clinical datasets play an important role in developing an intelligent healthcare system for monitoring the health of people. Mostly, the real-world datasets are inherently class imbalanced, clinical datasets also suffer from this imbalance problem, and the imbalanced class distributions pose several issues in the training of classifiers. Consequently, classifiers suffer from low accuracy, precision, recall, and a high degree of misclassification, etc. We performed a brief literature review on the class imbalanced learning scenario. This study carries the empirical performance evaluation of six classifiers, namely Decision Tree, k-Nearest Neighbor, Logistic regression, Artificial Neural Network, Support Vector Machine, and Gaussian Naïve Bayes, over five imbalanced clinical datasets, Breast Cancer Disease, Coronary Heart Disease, Indian Liver Patient, Pima Indians Diabetes Database, and Coronary Kidney Disease, with respect to seven different class balancing techniques, namely Undersampling, Random oversampling, SMOTE, ADASYN, SVM-SMOTE, SMOTEEN, and SMOTETOMEK. In addition to this, the appropriate explanations for the superiority of the classifiers as well as data-balancing techniques are also explored. Furthermore, we discuss the possible recommendations on how to tackle the class imbalanced datasets while training the different supervised machine learning methods. Result analysis demonstrates that SMOTEEN balancing method often performed better over all the other six data-balancing techniques with all six classifiers and for all five clinical datasets. Except for SMOTEEN, all other six balancing techniques almost had equal performance but moderately lesser performance than SMOTEEN.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Healthcare (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Healthcare (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia País de publicação: Suíça