Your browser doesn't support javascript.
loading
Is Mixtures' Additivity Supported by Empirical Data? A Case Study of Developmental Toxicity of PFOS and 6:2 FTS in Wildtype Zebrafish Embryos.
Fey, Megan E; Goodrum, Philip E; Razavi, N Roxanna; Whipps, Christopher M; Fernando, Sujan; Anderson, Janet K.
Afiliação
  • Fey ME; College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.
  • Goodrum PE; College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.
  • Razavi NR; GSI Environmental Inc., Austin, TX 78759, USA.
  • Whipps CM; College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.
  • Fernando S; College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.
  • Anderson JK; Center for Air and Aquatic Resources Engineering and Science (CAARES), Clarkson University, Potsdam, NY 13699, USA.
Toxics ; 10(8)2022 Jul 25.
Article em En | MEDLINE | ID: mdl-35893851
ABSTRACT
Per- and polyfluoroalkyl substances (PFASs) are a major priority for many federal and state regulatory agencies charged with monitoring levels of emerging contaminants in environmental media and setting health-protective benchmarks to guide risk assessments. While screening levels and toxicity reference values have been developed for numerous individual PFAS compounds, there remain important data gaps regarding the mode of action for toxicity of PFAS mixtures. The present study aims to contribute whole-mixture toxicity data and advance the methods for evaluating mixtures of two key components of aqueous film-forming foams perfluorooctanesulfonic acid (PFOS), and 62 fluorotelomer sulfonic acid (62 FTS). Wildtype (AB) zebrafish embryos were exposed to PFOS and 62 FTS, both as individual components and as binary mixtures, from 2 to 122 h post-fertilization. Five treatment levels were selected to encompass environmentally relevant exposure levels. Experimental endpoints consisted of mortality, hatching, and developmental endpoints, including swim bladder inflation, yolk sac area, and larval body length. Results from dose-response analysis indicate that the assumption of additivity using conventional points of departure (e.g., NOAEL, LOAEL) is not supported for critical effect endpoints with these PFAS mixtures, and that the interactions vary as a function of the dose range. Alternative methods for quantifying relative potency are proposed, and recommendations for additional investigations are provided to further advance assessments of the toxicity of PFAS mixtures to aquatic organisms.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Toxics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Toxics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos