Your browser doesn't support javascript.
loading
Broad-spectrum chemicals block ROS detoxification to prevent plant fungal invasion.
Yang, Qianqian; Yang, Jinguang; Wang, Yameng; Du, Juan; Zhang, Jianan; Luisi, Ben F; Liang, Wenxing.
Afiliação
  • Yang Q; College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural
  • Yang J; Tobacco Research Institute of CAAS, Qingdao 266100, China.
  • Wang Y; College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural
  • Du J; College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
  • Zhang J; College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural
  • Luisi BF; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
  • Liang W; College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural
Curr Biol ; 32(18): 3886-3897.e6, 2022 09 26.
Article em En | MEDLINE | ID: mdl-35932761
Plant diseases cause a huge impact on food security and are of global concern. While application of agrochemicals is a common approach in the control of plant diseases currently, growing drug resistance and the impact of off-target effects of these compounds pose major challenges. The identification of pathogenicity-related virulence mechanisms and development of new chemicals that target these processes are urgently needed. One such virulence mechanism is the detoxification of reactive oxygen species (ROS) generated by host plants upon attack by pathogens. The machinery of ROS detoxification might therefore serve as a drug target for preventing plant diseases, but few anti-ROS-scavenging drugs have been developed. Here, we show that in the model system Botrytis cinerea secretion of the cytochrome c-peroxidase, BcCcp1 removes plant-produced H2O2 and promotes pathogen invasion. The peroxidase secretion is modulated by a Tom1-like protein, BcTol1, through physical interaction. We show that BcTol1 is regulated at different levels to enhance the secretion of BcCcp1 during the early infection stage. Inactivation of either BcTol1 or BcCcp1 leads to dramatically reduced virulence of B. cinerea. We identify two BcTol1-targeting small molecules that not only prevent B. cinerea invasion but also have effective activity against a wide range of plant fungal pathogens without detectable effect on the hosts. These findings reveal a conserved mechanism of ROS detoxification in fungi and provide a class of potential fungicides to control diverse plant diseases. The approach described here has wide implications for further drug discovery in related fields.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fungicidas Industriais Tipo de estudo: Prognostic_studies Idioma: En Revista: Curr Biol Assunto da revista: BIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fungicidas Industriais Tipo de estudo: Prognostic_studies Idioma: En Revista: Curr Biol Assunto da revista: BIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Reino Unido