Cement-Based Solidification/Stabilization as a Pathway for Encapsulating Palm Oil Residual Biomass Post Heavy Metal Adsorption.
Materials (Basel)
; 15(15)2022 Jul 28.
Article
em En
| MEDLINE
| ID: mdl-35955162
Heavy metal pollution is a serious issue currently affecting the environment and public health, which has been faced by applying several alternatives such as adsorption. In this work, the adsorption technique was employed to remove nickel and lead ions from an aqueous solution using palm oil residual biomass as a biosorbent. Desorption experiments were also conducted to evaluate the desorption capacity of this biomass over sorption-desorption cycles. The polluted biomass was used to prepare bricks (5 and 10% biomass content) to encapsulate heavy metal ions into the cement matrix. Both mechanical resistance and leaching testing were performed to determine the suitability of these bricks for construction applications. The experimental results revealed a good biosorbent dosage of 0.1 g/L. The highest desorption yields were calculated in 11 and 83.13% for nickel and lead, respectively. The compression resistance when 10% biomass was incorporated into the bricks was reported to be below the acceptable limit. Leaching testing suggested a successful immobilization of heavy metal ions onto the cement matrix. These results indicate that the application of this immobilization technique allows solving disposal problems of biomass loaded with heavy metal ions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Materials (Basel)
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Colômbia
País de publicação:
Suíça