Your browser doesn't support javascript.
loading
Biotransformation of bisphenol F by white-rot fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.
Yin, Ru; Zhang, Xue; Wang, Beijia; Jia, Jianbo; Wang, Nana; Xie, Chunyan; Su, Peiyang; Xiao, Pengfei; Wang, Jianqiao; Xiao, Tangfu; Yan, Bing; Hirai, Hirofumi.
Afiliação
  • Yin R; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
  • Zhang X; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
  • Wang B; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
  • Jia J; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
  • Wang N; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
  • Xie C; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
  • Su P; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
  • Xiao P; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
  • Wang J; College of Forestry, Northeast Forestry University, Harbin, 150040, China.
  • Xiao T; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. wangjq@gzhu.edu.cn.
  • Yan B; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
  • Hirai H; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
Appl Microbiol Biotechnol ; 106(18): 6277-6287, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35986779
ABSTRACT
Environmental bisphenol F (BPF) has a cyclic endocrine disruption effect, seriously threatening animal and human health. It is frequently detected in environmental samples worldwide. For BPF remediation, biological methods are more environmentally friendly than physicochemical methods. White-rot fungi have been increasingly studied due to their potential capability to degrade environmental pollutants. Phanerochaete sordida YK-624 has been shown to degrade BPF by ligninolytic enzymes under ligninolytic conditions. In the present study, degradation of BPF under non-ligninolytic conditions (no production of ligninolytic enzymes) was investigated. Our results showed that BPF could be completely removed after 7-d incubation. A metabolite of BPF, 4,4'-dihydroxybenzophenone (DHBP) was identified by mass spectrometry and nuclear magnetic resonance, and DHBP was further degraded by this fungus to form 4-hydroxyphenyl 4-hydroxybenzoate (HPHB). DHBP and HPHB were the intermediate metabolites of BPF and would be further degraded by P. sordida YK-624. We also found that cytochrome P450s played an important role in BPF degradation. Additionally, transcriptomic analysis further supported the involvement of these enzymes in the action of BPF degradation. Therefore, BPF is transformed to DHBP and then to HPHB likely oxidized by cytochrome P450s in P. sordida YK-624. Furthermore, the toxicological studies demonstrated that the order of endocrine-disrupting activity for BPF and its metabolites was HPHB > BPF > DHBP. KEY POINTS • White-rot fungus Phanerochaete sordida YK-624 could degrade BPF. • Cytochrome P450s were involved in the BPF degradation. • The order of endocrine disrupting activity was HPHB > BPF > DHBP.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Compostos Benzidrílicos / Phanerochaete Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Compostos Benzidrílicos / Phanerochaete Idioma: En Revista: Appl Microbiol Biotechnol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China