Weighted average ensemble-based semantic segmentation in biological electron microscopy images.
Histochem Cell Biol
; 158(5): 447-462, 2022 Nov.
Article
em En
| MEDLINE
| ID: mdl-35988009
Semantic segmentation of electron microscopy images using deep learning methods is a valuable tool for the detailed analysis of organelles and cell structures. However, these methods require a large amount of labeled ground truth data that is often unavailable. To address this limitation, we present a weighted average ensemble model that can automatically segment biological structures in electron microscopy images when trained with only a small dataset. Thus, we exploit the fact that a combination of diverse base-learners is able to outperform one single segmentation model. Our experiments with seven different biological electron microscopy datasets demonstrate quantitative and qualitative improvements. We show that the Grad-CAM method can be used to interpret and verify the prediction of our model. Compared with a standard U-Net, the performance of our method is superior for all tested datasets. Furthermore, our model leverages a limited number of labeled training data to segment the electron microscopy images and therefore has a high potential for automated biological applications.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Semântica
/
Processamento de Imagem Assistida por Computador
Tipo de estudo:
Prognostic_studies
/
Qualitative_research
Idioma:
En
Revista:
Histochem Cell Biol
Assunto da revista:
CITOLOGIA
/
HISTOCITOQUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Alemanha
País de publicação:
Alemanha