Your browser doesn't support javascript.
loading
Weighted average ensemble-based semantic segmentation in biological electron microscopy images.
Shaga Devan, Kavitha; Kestler, Hans A; Read, Clarissa; Walther, Paul.
Afiliação
  • Shaga Devan K; Central Facility of Electron Microscopy, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany. kavitha.shaga-devan@uni-ulm.de.
  • Kestler HA; Medical Systems Biology, Ulm University, Albert Einstein-Alee 11, 89081, Ulm, Germany.
  • Read C; Central Facility of Electron Microscopy, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
  • Walther P; Institute of Virology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany.
Histochem Cell Biol ; 158(5): 447-462, 2022 Nov.
Article em En | MEDLINE | ID: mdl-35988009
Semantic segmentation of electron microscopy images using deep learning methods is a valuable tool for the detailed analysis of organelles and cell structures. However, these methods require a large amount of labeled ground truth data that is often unavailable. To address this limitation, we present a weighted average ensemble model that can automatically segment biological structures in electron microscopy images when trained with only a small dataset. Thus, we exploit the fact that a combination of diverse base-learners is able to outperform one single segmentation model. Our experiments with seven different biological electron microscopy datasets demonstrate quantitative and qualitative improvements. We show that the Grad-CAM method can be used to interpret and verify the prediction of our model. Compared with a standard U-Net, the performance of our method is superior for all tested datasets. Furthermore, our model leverages a limited number of labeled training data to segment the electron microscopy images and therefore has a high potential for automated biological applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Semântica / Processamento de Imagem Assistida por Computador Tipo de estudo: Prognostic_studies / Qualitative_research Idioma: En Revista: Histochem Cell Biol Assunto da revista: CITOLOGIA / HISTOCITOQUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Semântica / Processamento de Imagem Assistida por Computador Tipo de estudo: Prognostic_studies / Qualitative_research Idioma: En Revista: Histochem Cell Biol Assunto da revista: CITOLOGIA / HISTOCITOQUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Alemanha