Your browser doesn't support javascript.
loading
Magnetophoretic capacitors for storing single particles and magnetized cells in microfluidic devices.
Abedini-Nassab, Roozbeh; Aldaghi, Zahra; Dan, Yaping.
Afiliação
  • Abedini-Nassab R; Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
  • Aldaghi Z; Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran.
  • Dan Y; University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
Biomicrofluidics ; 16(4): 044110, 2022 Jul.
Article em En | MEDLINE | ID: mdl-35992640
ABSTRACT
Precise positioning of magnetic particles and magnetized cells in lab-on-a-chip systems has attracted broad attention. Recently, drawing inspiration from electrical circuits, we have demonstrated a magnetic particle transport platform composed of patterned magnetic thin films in a microfluidic environment, which accurately moves the particles and single cells to specific spots, called capacitors. However, we have made no prior attempts to optimize the capacitor geometry. Here, we carefully analyze various design parameters and their effect on capacitor operation. We run simulations based on finite element methods and stochastic numerical analysis using our semi-analytical model. We then perform the required experiments to study the loading efficiency of capacitors with different geometries for magnetic particles of multiple sizes. Our experimental results agree well with the design criteria we developed based on our simulation results. We also show the capability of designed capacitors in storing the magnetically labeled cells and illustrate using them in a pilot drug screening application. These results are directly applicable to the design of robust platforms capable of transporting and assembling a large number of single particles and single cells in arrays, which are useful in the emerging field of single-cell analysis.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomicrofluidics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Irã

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomicrofluidics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Irã