Your browser doesn't support javascript.
loading
Thermodynamic Analysis of Intermediary Metabolic Steps and Nitrous Oxide Production by Ammonium-Oxidizing Bacteria.
Young, Michelle N; Boltz, Joshua; Rittmann, Bruce E; Al-Omari, Ahmed; Jimenez, Jose A; Takacs, Imre; Marcus, Andrew K.
Afiliação
  • Young MN; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States.
  • Boltz J; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States.
  • Rittmann BE; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States.
  • Al-Omari A; Brown and Caldwell, 1725 Duke Street Suite 250, Alexandria, Virginia 22314, United States.
  • Jimenez JA; Brown and Caldwell, 351 Lucien Way, Suite 250, Maitland, Florida 32751, United States.
  • Takacs I; Dynamita, 2015 route d'Aiglun, 06910 Sigale, France.
  • Marcus AK; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5701, United States.
Environ Sci Technol ; 56(17): 12532-12541, 2022 09 06.
Article em En | MEDLINE | ID: mdl-35993695
Nitrous oxide (N2O) is a greenhouse gas emitted from wastewater treatment, soils, and agriculture largely by ammonium-oxidizing bacteria (AOB). While AOB are characterized by being aerobes that oxidize ammonium (NH4+) to nitrite (NO2-), fundamental studies in microbiology are revealing the importance of metabolic intermediates and reactions that can lead to the production of N2O. These findings about the metabolic pathways for AOB were integrated with thermodynamic electron-equivalents modeling (TEEM) to estimate kinetic and stoichiometric parameters for each of the AOB's nitrogen (N)-oxidation and -reduction reactions. The TEEM analysis shows that hydroxylamine (NH2OH) oxidation to nitroxyl (HNO) is the most energetically efficient means for the AOB to provide electrons for ammonium monooxygenation, while oxidations of HNO to nitric oxide (NO) and NO to NO2- are energetically favorable for respiration and biomass synthesis. The respiratory electron acceptor can be O2 or NO, and both have similar energetics. The TEEM-predicted value for biomass yield, maximum-specific rate of NH4+ utilization, and maximum specific growth rate are consistent with empirical observations. NO reduction to N2O is thermodynamically favorable for respiration and biomass synthesis, but the need for O2 as a reactant in ammonium monooxygenation likely precludes NO reduction to N2O from becoming the major pathway for respiration.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos de Amônio / Óxido Nitroso Tipo de estudo: Prognostic_studies Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos de Amônio / Óxido Nitroso Tipo de estudo: Prognostic_studies Idioma: En Revista: Environ Sci Technol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos