Your browser doesn't support javascript.
loading
Modeling root loss reveals impacts on nutrient uptake and crop development.
Schäfer, Ernst D; Owen, Markus R; Band, Leah R; Farcot, Etienne; Bennett, Malcolm J; Lynch, Jonathan P.
Afiliação
  • Schäfer ED; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
  • Owen MR; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
  • Band LR; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
  • Farcot E; School of Biosciences, University of Nottingham, Nr Loughborough, LE12 5RD, UK.
  • Bennett MJ; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
  • Lynch JP; School of Biosciences, University of Nottingham, Nr Loughborough, LE12 5RD, UK.
Plant Physiol ; 190(4): 2260-2278, 2022 11 28.
Article em En | MEDLINE | ID: mdl-36047839
Despite the widespread prevalence of root loss in plants, its effects on crop productivity are not fully understood. While root loss reduces the capacity of plants to take up water and nutrients from the soil, it may provide benefits by decreasing the resources required to maintain the root system. Here, we simulated a range of root phenotypes in different soils and root loss scenarios for barley (Hordeum vulgare), common bean (Phaseolus vulgaris), and maize (Zea mays) using and extending the open-source, functional-structural root/soil simulation model OpenSimRoot. The model enabled us to quantify the impact of root loss on shoot dry weight in these scenarios and identify in which scenarios root loss is beneficial, detrimental, or has no effect. The simulations showed that root loss is detrimental for phosphorus uptake in all tested scenarios, whereas nitrogen uptake was relatively insensitive to root loss unless main root axes were lost. Loss of axial roots reduced shoot dry weight for all phenotypes in all species and soils, whereas lateral root loss had a smaller impact. In barley and maize plants with high lateral branching density that were not phosphorus-stressed, loss of lateral roots increased shoot dry weight. The fact that shoot dry weight increased due to root loss in these scenarios indicates that plants overproduce roots for some environments, such as those found in high-input agriculture. We conclude that a better understanding of the effects of root loss on plant development is an essential part of optimizing root system phenotypes for maximizing yield.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hordeum / Phaseolus Tipo de estudo: Risk_factors_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hordeum / Phaseolus Tipo de estudo: Risk_factors_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos