Your browser doesn't support javascript.
loading
Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors.
Xu, Hanping; Cui, Linlin; Pan, Xian; An, Yingrui; Jin, Xiaojuan.
Afiliação
  • Xu H; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Cui L; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Pan X; Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10 Xi Tou Tiao, You An Men, Beijing 100069, China.
  • An Y; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Jin X; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China. Electronic address: jxj0
Int J Biol Macromol ; 219: 1135-1145, 2022 Oct 31.
Article em En | MEDLINE | ID: mdl-36049565
Herein, we demonstrate a flexible, structural robust and highly electrochemical active film electrode based on evenly distributed carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) for supercapacitors. In this process, vertically aligned PANI nanoparticles grow in an orderly manner on CMC fibers. The highly dispersed CNT nanomaterials are then introduced by simple layer-by-layer assembly, eventually forming an interwoven network structure. Mechanical tests have shown that the obtained CMC-PANI/CNT film exhibit excellent robustness and flexibility, and can be used directly as electrodes without any conductive additives and binders. The CMC-PANI/CNT electrode with optimal CMC, PANI and CNT contents demonstrates an excellent area specific capacitance of 3106.3 mF cm-2 at 5 mA cm-2 and a gravimetric specific capacitance of 348.8 F g-1 at 0.5 A g-1. Furthermore, the symmetric supercapacitor (SSC) assembled with CMC-PANI/CNT exhibits a high energy density of 99.89 µW h cm-2 at a power density of 400.02 µW cm-2, and a good cycling stability (with capacitance retention of 89.2 % after 5000 cycles). The cost-effective and eco-friendly preparation method of free-standing CMC-PANI/CNT film electrodes provide a novel insight for developing flexible energy storage devices.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanotubos de Carbono Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanotubos de Carbono Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Holanda