Your browser doesn't support javascript.
loading
Predicting antibiotic resistance in complex protein targets using alchemical free energy methods.
Brankin, Alice E; Fowler, Philip W.
Afiliação
  • Brankin AE; Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
  • Fowler PW; Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
J Comput Chem ; 43(26): 1771-1782, 2022 10 05.
Article em En | MEDLINE | ID: mdl-36054249
Drug resistant Mycobacterium tuberculosis, which mostly results from single nucleotide polymorphisms in antibiotic target genes, poses a major threat to tuberculosis treatment outcomes. Relative binding free energy (RBFE) calculations can rapidly predict the effects of mutations, but this approach has not been tested on large, complex proteins. We use RBFE calculations to predict the effects of M. tuberculosis RNA polymerase and DNA gyrase mutations on rifampicin and moxifloxacin susceptibility respectively. These mutations encompass a range of amino acid substitutions with known effects and include large steric perturbations and charged moieties. We find that moderate numbers (n = 3-15) of short RBFE calculations can predict resistance in cases where the mutation results in a large change in the binding free energy. We show that the method lacks discrimination in cases with either a small change in energy or that involve charged amino acids, and we investigate how these calculation errors may be decreased.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tuberculose / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Comput Chem Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tuberculose / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Comput Chem Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos