Your browser doesn't support javascript.
loading
Neither myonuclear accretion nor a myonuclear domain size ceiling is a feature of the attenuated hypertrophic potential of aged human skeletal muscle.
Brook, Matthew S; Wilkinson, Daniel J; Tarum, Janelle; Mitchell, Kyle W; Lund, Jonathan L; Phillips, Bethan E; Szewczyk, Nathaniel J; Kadi, Fawzi; Greenhaff, Paul L; Smith, Ken; Atherton, Philip J.
Afiliação
  • Brook MS; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK. Matthew.Brook@nottingham.ac.uk.
  • Wilkinson DJ; School of Life Sciences, University of Nottingham, Nottingham, UK. Matthew.Brook@nottingham.ac.uk.
  • Tarum J; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK.
  • Mitchell KW; School of Health Sciences, Örebro University, Örebro, Sweden.
  • Lund JL; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK.
  • Phillips BE; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK.
  • Szewczyk NJ; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK.
  • Kadi F; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK.
  • Greenhaff PL; School of Health Sciences, Örebro University, Örebro, Sweden.
  • Smith K; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Derby, UK.
  • Atherton PJ; School of Life Sciences, University of Nottingham, Nottingham, UK.
Geroscience ; 45(1): 451-462, 2023 02.
Article em En | MEDLINE | ID: mdl-36083436
Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via D2O ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm2, 3 weeks; 5497 ± 510 µm2 P < 0.05, 6 weeks; 5402 ± 352 µm2 P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm2, 3 weeks; 5606 ± 620 µm2, 6 weeks; 6017 ± 482 µm2 P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm2, 3 weeks; 6145 ± 484 µm2 (P < 0.01), 6 weeks; 5992 ± 491 µm2 (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm2, 3 weeks; 5356 ± 535 µm2 (P = 0.9), 6 weeks; 5857 ± 478 µm2 (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d-1 exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Treinamento Resistido Limite: Aged / Humans / Male Idioma: En Revista: Geroscience Ano de publicação: 2023 Tipo de documento: Article País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Treinamento Resistido Limite: Aged / Humans / Male Idioma: En Revista: Geroscience Ano de publicação: 2023 Tipo de documento: Article País de publicação: Suíça