Your browser doesn't support javascript.
loading
ROS-responsive resveratrol-loaded cyclodextrin nanomicelles reduce inflammatory osteolysis.
Fang, Xiaolin; Hu, Jun-Feng; Hu, Qing-Yun; Li, Han; Sun, Zhi-Jun; Xu, Zhigang; Zhang, Lu.
Afiliação
  • Fang X; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
  • Hu JF; School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China.
  • Hu QY; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
  • Li H; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
  • Sun ZJ; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
  • Xu Z; School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China. Electronic address: zgxu@swu.edu.cn.
  • Zhang L; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address: luzhang2012@whu.edu.cn.
Colloids Surf B Biointerfaces ; 219: 112819, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36137333
Bone loss in inflammatory disorders such as osteomyelitis, septic arthritis, and periodontitis is caused by excessive osteoclastic activity. Meanwhile, reactive oxygen species (ROS) have been identified as contributors to osteoclast differentiation, and the application of ROS scavengers has emerged as a promising strategy to protect against bone loss. Recently, resveratrol (RSV), a polyphenolic phytoalexin, has been demonstrated to inhibit osteoclastogenesis by scavenging ROS; however, the application of RSV as an antioxidant is limited by its low water solubility, structural instability, and short elimination half-life. In this study, we developed a PEGylated cyclodextrin (CD)-based nanoplatform (PCP) for local delivery of RSV as nanomicelles (RSV-NMs). In addition, polymer functionalization with phenylboronic acid ester in RSV-NMs successfully achieved ROS-responsive release of RSV. The RSV-NMs in a well-dispersed state possessed good biocompatibility as well as improved solubility and stability compared with RSV compound. In vitro, RSV-NMs significantly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells and suppressed F-actin (filamentous actin) ring formation. Additionally, the mRNA expressions of osteoclastic marker genes, including matrix metalloprotein-9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), TRAP, and cathepsin K, were consequently downregulated in the presence of RSV-NMs. In vivo, RSV-NMs provided protection against LPS-induced bone destruction, as evidenced by a decreased number of osteoclasts, increased bone density, and reduced area of bone resorption. Taken together, these results indicate that our ROS-responsive RSV-NMs can be employed as a potential therapeutic agent for the treatment of inflammatory osteolysis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Holanda