Your browser doesn't support javascript.
loading
Computational analysis of immunogenic epitopes in the p30 and p54 proteins of African swine fever virus.
Imdhiyas, Mohamed; Sen, Suvam; Barman, Nagendra; Buragohain, Lukumoni; Malik, Yashpal; Kumar, Sachin.
Afiliação
  • Imdhiyas M; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
  • Sen S; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
  • Barman N; Department of Microbiology, College of Veterinary Science, Assam Agricultural University Khanapara Campus, Guwahati, Assam, India.
  • Buragohain L; Department of Microbiology, College of Veterinary Science, Assam Agricultural University Khanapara Campus, Guwahati, Assam, India.
  • Malik Y; College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University (GADVASU), Ludhiana, Punjab, India.
  • Kumar S; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
J Biomol Struct Dyn ; 41(15): 7480-7489, 2023.
Article em En | MEDLINE | ID: mdl-36148815
African swine fever (ASF) is a highly infectious viral disease of pigs, which causes acute fatal haemorrhage and is a severe concern to the global pork industry. The present study followed computational approaches to identify B- and T-cell epitopes for the p30 and p54 proteins of the African swine fever virus (ASFV) by interacting with the swine leukocyte antigen (SLA) alleles. The amino acid sequences of p30 and p54 were analysed for variability and relative solvent accessibility, and their three-dimensional structures were predicted and validated. Molecular dynamics simulation was performed to study the structural and dynamic properties of the protein. Six and five linear B-cell epitopes have been predicted for p30 and p54, respectively. Four and three discontinuous B-cell epitopes have been predicted for p30 and p54, respectively. Further, the top five T-cell epitopes for SLA-1, 2, and 3 have been listed for both proteins. These results can help us to understand the immunodominant regions in the p30 and p54 proteins of ASFV and potentially assist in designing peptide-based diagnostics and vaccines. Also, the identified T-cell epitopes may be considered for peptide-based vaccine design against ASFV.Communicated by Ramaswamy H. Sarma.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Biomol Struct Dyn Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Biomol Struct Dyn Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia País de publicação: Reino Unido