Your browser doesn't support javascript.
loading
Machine learning-enabled high-entropy alloy discovery.
Rao, Ziyuan; Tung, Po-Yen; Xie, Ruiwen; Wei, Ye; Zhang, Hongbin; Ferrari, Alberto; Klaver, T P C; Körmann, Fritz; Sukumar, Prithiv Thoudden; Kwiatkowski da Silva, Alisson; Chen, Yao; Li, Zhiming; Ponge, Dirk; Neugebauer, Jörg; Gutfleisch, Oliver; Bauer, Stefan; Raabe, Dierk.
Afiliação
  • Rao Z; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Tung PY; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Xie R; Department of Earth Sciences, University of Cambridge, Cambridge, UK.
  • Wei Y; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
  • Zhang H; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Ferrari A; Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
  • Klaver TPC; Materials Science and Engineering, Delft University of Technology, Delft, Netherlands.
  • Körmann F; Materials Science and Engineering, Delft University of Technology, Delft, Netherlands.
  • Sukumar PT; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Kwiatkowski da Silva A; Materials Science and Engineering, Delft University of Technology, Delft, Netherlands.
  • Chen Y; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Li Z; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Ponge D; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Neugebauer J; School of Civil Engineering, Southeast University, Nanjing, China.
  • Gutfleisch O; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Bauer S; School of Materials Science and Engineering, Central South University, Changsha, China.
  • Raabe D; Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
Science ; 378(6615): 78-85, 2022 10 07.
Article em En | MEDLINE | ID: mdl-36201584
ABSTRACT
High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10-6 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha