Genome-wide identification of R2R3-MYB family genes and gene response to stress in ginger.
Plant Genome
; : e20258, 2022 Oct 09.
Article
em En
| MEDLINE
| ID: mdl-36209364
Ginger (Zingiber officinale Roscoe) is an important plant used worldwide for medicine and food. The R2R3-MYB transcription factor (TF) family has essential roles in plant growth, development, and stresses resistance, and the number of genes in the family varies greatly among different types of plants. However, genome-wide discovery of ZoMYBs and gene responses to stresses have not been reported in ginger. Therefore, genome-wide analysis of R2R3-MYB genes in ginger was conducted in this study. Protein phylogenetic relations and conserved motifs and chromosome localization and duplication, structure, and cis-regulatory elements were analyzed. In addition, the expression patterns of selected genes were analyzed under two different stresses. A total of 299 candidate ZoMYB genes were discovered in ginger. Based on groupings of R2R3-MYB genes in the model plant Arabidopsis thaliana (L.) Heynh., ZoMYBs were divided into eight groups. Genes were distributed across 22 chromosomes at uneven densities. In gene duplication analysis, 120 segmental duplications were identified in the ginger genome. Gene expression patterns of 10 ZoMYBs in leaves of ginger under abscisic acid (ABA) and low-temperature stress treatments were different. The results will help to determine the exact roles of ZoMYBs in anti-stress responses in ginger.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
Plant Genome
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos