Your browser doesn't support javascript.
loading
An efficient and low complex model for optimal RBM features with weighted score-based ensemble multi-disease prediction.
Anish, T P; Joe Prathap, P M.
Afiliação
  • Anish TP; Assistant Professor, Department of Computer Science and Engineering, R.M.K. College of Engineering and Technology, Puduvoyal, India.
  • Joe Prathap PM; Professor, Department of Computer Science and Engineering, R.M.D. Engineering College, Kavaraipettai, India.
Comput Methods Biomech Biomed Engin ; 26(3): 350-372, 2023 Feb.
Article em En | MEDLINE | ID: mdl-36218238
Multi-disease prediction is regarded as the capacity to simultaneously identify various diseases that are expected to be affected an individual at a certain period. These multiple diseases are seemed to be at various progression levels and need to be detected in the patient at the time of clinical visits. Diverse studies in the literature have included the predictive models for particular diseases yet, it is unable to notice humans with multiple diseases since humans are mostly suffered not only from a single disease but also from multiple diseases. Hence, this article aims to implement a novel multi-disease prediction model using an ensemble learning approach with deep features. The required data for the multi-disease prediction is collected from the standard datasets. Then, the collected data are given into the "Deep Belief Network (DBN)" approach, where the features are obtained from the RBM layers. These RBM features are tuned with the help of Deviation-based Hybrid Grasshopper Barnacles Mating Optimization (D-HGBMO) for improving the prediction performance. The optimized RBM features are considered in the ensemble learning model named Ensemble, in which the multi-disease prediction is performed with "Deep Neural Network (DNN), Extreme Learning Machine (ELM), and Long Short Term Memory." The predicted score from three classifiers is used in the optimized weighted score and thresholding-based final prediction using the same D-HGBMO for determining the accurate multi-disease prediction results. The experimental results show the effective performance of the proposed model by comparing it with the existing classifiers with the help of different quantitative measures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Redes Neurais de Computação Tipo de estudo: Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Limite: Humans Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Redes Neurais de Computação Tipo de estudo: Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Limite: Humans Idioma: En Revista: Comput Methods Biomech Biomed Engin Assunto da revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia País de publicação: Reino Unido