Your browser doesn't support javascript.
loading
Progressive Transcriptional Changes in the Amygdala Implicate Neuroinflammation in the Effects of Repetitive Low-Level Blast Exposure in Male Rats.
De Gasperi, Rita; Gama Sosa, Miguel A; Perez Garcia, Georgina S; Perez, Gissel M; Abutarboush, Rania; Kawoos, Usmah; Statz, Jonathan K; Patterson, Jacob; Hof, Patrick R; Katsel, Pavel; Cook, David G; Ahlers, Stephen T; Elder, Gregory A.
Afiliação
  • De Gasperi R; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.
  • Gama Sosa MA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Perez Garcia GS; Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Perez GM; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Abutarboush R; General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.
  • Kawoos U; Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Statz JK; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.
  • Patterson J; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  • Hof PR; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.
  • Katsel P; Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.
  • Cook DG; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.
  • Ahlers ST; Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.
  • Elder GA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.
J Neurotrauma ; 40(5-6): 561-577, 2023 03.
Article em En | MEDLINE | ID: mdl-36262047
Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismos por Explosões / Lesões Encefálicas Traumáticas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neurotrauma Assunto da revista: NEUROLOGIA / TRAUMATOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismos por Explosões / Lesões Encefálicas Traumáticas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neurotrauma Assunto da revista: NEUROLOGIA / TRAUMATOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos