Computational modeling of color perception with biologically plausible spiking neural networks.
PLoS Comput Biol
; 18(10): e1010648, 2022 10.
Article
em En
| MEDLINE
| ID: mdl-36301992
Biologically plausible computational modeling of visual perception has the potential to link high-level visual experiences to their underlying neurons' spiking dynamic. In this work, we propose a neuromorphic (brain-inspired) Spiking Neural Network (SNN)-driven model for the reconstruction of colorful images from retinal inputs. We compared our results to experimentally obtained V1 neuronal activity maps in a macaque monkey using voltage-sensitive dye imaging and used the model to demonstrate and critically explore color constancy, color assimilation, and ambiguous color perception. Our parametric implementation allows critical evaluation of visual phenomena in a single biologically plausible computational framework. It uses a parametrized combination of high and low pass image filtering and SNN-based filling-in Poisson processes to provide adequate color image perception while accounting for differences in individual perception.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Redes Neurais de Computação
/
Percepção de Cores
Idioma:
En
Revista:
PLoS Comput Biol
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Israel
País de publicação:
Estados Unidos