Your browser doesn't support javascript.
loading
Prediction and analysis of periprocedural complications associated with endovascular treatment for unruptured intracranial aneurysms using machine learning.
Tian, Zhongbin; Li, Wenqiang; Feng, Xin; Sun, Kaijian; Duan, Chuanzhi.
Afiliação
  • Tian Z; National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
  • Li W; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
  • Feng X; National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
  • Sun K; National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
  • Duan C; National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Front Neurol ; 13: 1027557, 2022.
Article em En | MEDLINE | ID: mdl-36313499
Background: The management of unruptured intracranial aneurysm (UIA) remains controversial. Recently, machine learning has been widely applied in the field of medicine. This study developed predictive models using machine learning to investigate periprocedural complications associated with endovascular procedures for UIA. Methods: We enrolled patients with solitary UIA who underwent endovascular procedures. Periprocedural complications were defined as neurological adverse events resulting from endovascular procedures. We incorporated three machine learning algorithms into our prediction models: artificial neural networks (ANN), random forest (RF), and logistic regression (LR). The Shapley Additive Explanations (SHAP) approach and feature importance analysis were used to identify and prioritize significant features associated with periprocedural complications. Results: In total, 443 patients were included. Forty-eight (10.83%) procedure-related complications occurred. In the testing set, the ANN model produced the largest value (0.761) for area under the curve (AUC). The RF model also achieved an acceptable AUC value of 0.735, while the AUC value of the LR model was 0.668. SHAP and feature importance analysis identified distal aneurysm, aneurysm size and treatment modality as most significant features for the prediction of periprocedural complications following endovascular treatment for UIA. Conclusion: Periprocedural complications after endovascular treatment for UIA are not negligible. Prediction of periprocedural complications via machine learning is feasible and effective. Machine learning can serve as a promising tool in the decision-making process for UIA treatment.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Neurol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Neurol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Suíça