Your browser doesn't support javascript.
loading
Incorporating the image formation process into deep learning improves network performance.
Li, Yue; Su, Yijun; Guo, Min; Han, Xiaofei; Liu, Jiamin; Vishwasrao, Harshad D; Li, Xuesong; Christensen, Ryan; Sengupta, Titas; Moyle, Mark W; Rey-Suarez, Ivan; Chen, Jiji; Upadhyaya, Arpita; Usdin, Ted B; Colón-Ramos, Daniel Alfonso; Liu, Huafeng; Wu, Yicong; Shroff, Hari.
Afiliação
  • Li Y; State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
  • Su Y; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
  • Guo M; Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
  • Han X; Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
  • Liu J; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
  • Vishwasrao HD; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
  • Li X; Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
  • Christensen R; Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
  • Sengupta T; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
  • Moyle MW; Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
  • Rey-Suarez I; Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
  • Chen J; Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
  • Upadhyaya A; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
  • Usdin TB; Department of Biology, Brigham Young University-Idaho, Rexburg, ID, USA.
  • Colón-Ramos DA; Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA.
  • Liu H; Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
  • Wu Y; Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA.
  • Shroff H; Department of Physics, University of Maryland, College Park, MD, USA.
Nat Methods ; 19(11): 1427-1437, 2022 11.
Article em En | MEDLINE | ID: mdl-36316563
We present Richardson-Lucy network (RLN), a fast and lightweight deep learning method for three-dimensional fluorescence microscopy deconvolution. RLN combines the traditional Richardson-Lucy iteration with a fully convolutional network structure, establishing a connection to the image formation process and thereby improving network performance. Containing only roughly 16,000 parameters, RLN enables four- to 50-fold faster processing than purely data-driven networks with many more parameters. By visual and quantitative analysis, we show that RLN provides better deconvolution, better generalizability and fewer artifacts than other networks, especially along the axial dimension. RLN outperforms classic Richardson-Lucy deconvolution on volumes contaminated with severe out of focus fluorescence or noise and provides four- to sixfold faster reconstructions of large, cleared-tissue datasets than classic multi-view pipelines. We demonstrate RLN's performance on cells, tissues and embryos imaged with widefield-, light-sheet-, confocal- and super-resolution microscopy.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Aprendizado Profundo Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Aprendizado Profundo Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos