Your browser doesn't support javascript.
loading
Swelling-Induced Quaternized Anthrone-Containing Poly(aryl ether ketone) Membranes with Low Area Resistance and High Ion Selectivity for Vanadium Flow Batteries.
Zhang, Bengui; Fu, Yanshi; Liu, Qian; Li, Lu; Zhang, Xueting; Yang, Zhirong; Zhang, Enlei; Wang, Kangjun; Wang, Guosheng; Zhang, Zhigang; Zhang, Shouhai.
Afiliação
  • Zhang B; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Fu Y; State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China.
  • Liu Q; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Li L; State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China.
  • Zhang X; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Yang Z; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Zhang E; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Wang K; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Wang G; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Zhang Z; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
  • Zhang S; College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, China.
ACS Appl Mater Interfaces ; 14(45): 50858-50869, 2022 Nov 16.
Article em En | MEDLINE | ID: mdl-36331393
ABSTRACT
A vanadium flow battery (VFB) is one of the most promising electrochemical energy storage technologies. However, membranes for VFBs still suffer from high cost or low conductivity and poor stability. Here, we report new quaternized anthrone-containing poly(aryl ether ketone) (QAnPEK) membranes for VFBs. QAnPEK membranes with moderate ion exchange capacity (1.26 mmol g-1) were swelling-induced in H3PO4 (50 wt %) to form wider ion transport pathways that significantly enhanced membrane conductivity (e.g., 0.49 Ω cm2 for the QAnPEK-virgin membrane and 0.12 Ω cm2 for the swelling-induced QAnPEK-90 membrane). The bulky rigid anthrone-containing backbone provided high swelling resistance and enabled QAnPEK membranes to have high ion selectivity. As a result, QAnPEK membranes displayed low area resistance, high ion selectivity, and robust mechanical strength. The QAnPEK-90 membrane yielded excellent energy efficiencies (92.4% at 80 mA cm-2, 85.1% at 200 mA cm-2, and 80.3% at 280 mA cm-2). Moreover, QAnPEK membranes exhibited outstanding in situ and ex situ stability, for example, the VFB with the QAnPEK-40 membrane demonstrated highly stable battery performance for 3000 cycles at 160 mA cm-2. QAnPEK membranes are attractive candidates for VFB application.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China