Your browser doesn't support javascript.
loading
Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates.
Sun, Xiao; Chen, Xuanye; Fu, Cong; Yu, Qingbo; Zheng, Xu-Sheng; Fang, Fei; Liu, Yuanxu; Zhu, Junfa; Zhang, Wenhua; Huang, Weixin.
Afiliação
  • Sun X; Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China.
  • Chen X; Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China.
  • Fu C; Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China.
  • Yu Q; Department of Materials Science and Engineering, Anhui University of Science and Technology, 232001, Huainan, China.
  • Zheng XS; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China.
  • Fang F; Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China.
  • Liu Y; School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
  • Zhu J; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, China.
  • Zhang W; Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China.
  • Huang W; Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China.
Nat Commun ; 13(1): 6677, 2022 Nov 05.
Article em En | MEDLINE | ID: mdl-36335138
ABSTRACT
H2O2 is widely used as an oxidant for photocatalytic methane conversion to value-added chemicals over oxide-based photocatalysts under mild conditions, but suffers from low utilization efficiencies. Herein, we report that O2 is an efficient molecular additive to enhance the utilization efficiency of H2O2 by suppressing H2O2 adsorption on oxides and consequent photogenerated holes-mediated H2O2 dissociation into O2. In photocatalytic methane conversion over an anatase TiO2 nanocrystals predominantly enclosed by the {001} facets (denoted as TiO2{001})-C3N4 composite photocatalyst at room temperature and ambient pressure, O2 additive significantly enhances the utilization efficiency of H2O2 up to 93.3%, giving formic acid and liquid-phase oxygenates selectivities respectively of 69.8% and 97% and a formic acid yield of 486 µmolHCOOH·gcatalyst-1·h-1. Efficient charge separation within TiO2{001}-C3N4 heterojunctions, photogenerated holes-mediated activation of CH4 into ·CH3 radicals on TiO2{001} and photogenerated electrons-mediated activation of H2O2 into ·OOH radicals on C3N4, and preferential dissociative adsorption of methanol on TiO2{001} are responsible for the active and selective photocatalytic conversion of methane to formic acid over TiO2{001}-C3N4 composite photocatalyst.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China