Your browser doesn't support javascript.
loading
Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions.
Bai, Haoyun; Feng, Jinxian; Liu, Di; Zhou, Pengfei; Wu, Rucheng; Kwok, Chi Tat; Ip, Weng Fai; Feng, Wenlin; Sui, Xulei; Liu, Hongchao; Pan, Hui.
Afiliação
  • Bai H; Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
  • Feng J; Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
  • Liu D; Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
  • Zhou P; Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
  • Wu R; Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
  • Kwok CT; Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China.
  • Ip WF; Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China.
  • Feng W; School of Science, Chongqing University of Technology, Chongqing, 400054, China.
  • Sui X; Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
  • Liu H; Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
  • Pan H; Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China.
Small ; 19(5): e2205638, 2023 Feb.
Article em En | MEDLINE | ID: mdl-36417556
Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Alemanha