o-Vanillin Modulates Cell Phenotype and Extracellular Vesicles of Human Mesenchymal Stem Cells and Intervertebral Disc Cells.
Cells
; 11(22)2022 11 13.
Article
em En
| MEDLINE
| ID: mdl-36429018
Human mesenchymal stem cell (hMSC) and extracellular vesicle (EV) therapy is a promising treatment for discogenic low back pain (LBP). Although promising, major obstacles remain to be overcome. Cellular senescence reduces self-renewal and multipotent potentials, and the senescence-associated secretory phenotype creates an inflammatory environment negatively affecting tissue homeostasis. Reducing senescence could therefore improve regenerative approaches. Ortho-Vanillin (o-Vanillin) has senolytic activity and anti-inflammatory properties and could be a valuable supplement to MSC and EV therapy. Here, we used direct co-culture experiments to evaluate proteoglycan synthesis, inflammatory mediators, and senescent cells in the presence or absence of o-Vanillin. EV release and transfer between hMSCs and intervertebral disc cells (DCs) was examined, and the effect on hMSC differentiation and DC phenotype was evaluated in the presence and absence of o-Vanillin. This study demonstrates that o-Vanillin affects cell communication, enhances hMSC differentiation and improves DC phenotype. Co-cultures of DCs and hMSCs resulted in increased proteoglycan synthesis, a decreased number of senescent cells and decreased release of the cytokines IL6 and 8. Effects that were further enhanced by o-Vanillin. o-Vanillin profoundly increased EV release and/or uptake by hMSCs and DCs. DC markers were significantly upregulated in both cell types in response to conditioned media of o-Vanillin treated donor cells. Collectively, this study demonstrates that o-Vanillin affects hMSC and DC crosstalk and suggests that combining hMSCs and senolytic compounds may improve the outcome of cell supplementation and EV therapy for LBP.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Células-Tronco Mesenquimais
/
Vesículas Extracelulares
/
Disco Intervertebral
Limite:
Humans
Idioma:
En
Revista:
Cells
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Canadá
País de publicação:
Suíça